Fractional optimal control problems on a star graph: Optimality system and numerical solution

نویسندگان

چکیده

In this paper, we study optimal control problems for nonlinear fractional order boundary value on a star graph, where the derivative is described in Caputo sense. The adjoint state and optimality system are derived problem (FOCP) by using Lagrange multiplier method. Then, existence uniqueness of solution equation proved means Banach contraction principle. We also present numerical method to find approximate resulting system. In proposed method, \begin{document}$ L2 $\end{document} scheme Grünwald-Letnikov formula used approximation right Riemann-Liouville derivative, respectively, which converts into linear algebraic equations. Two examples provided demonstrate feasibility

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Numerical Solution of Fractional Optimal Control Problems Using Spectral Method and Hybrid Functions

In this paper‎, ‎a modern method is presented to solve a class of fractional optimal control problems (FOCPs) indirectly‎. ‎First‎, ‎the necessary optimality conditions for the FOCP are obtained in the form of two fractional differential equations (FDEs)‎. ‎Then‎, ‎the unknown functions are approximated by the hybrid functions‎, ‎including Bernoulli polynomials and Block-pulse functions based o...

متن کامل

Numerical Solution of Some Types of Fractional Optimal Control Problems

We present two different approaches for the numerical solution of fractional optimal control problems (FOCPs) based on a spectral method using Chebyshev polynomials. The fractional derivative is described in the Caputo sense. The first approach follows the paradigm "optimize first, then discretize" and relies on the approximation of the necessary optimality conditions in terms of the associated...

متن کامل

Numerical Solution of Delay Fractional Optimal Control Problems using Modification of Hat Functions

In this paper, we consider the numerical solution of a class of delay fractional optimal control problems using modification of hat functions. First, we introduce the fractional calculus and modification of hat functions. Fractional integral is considered in the sense of Riemann-Liouville and fractional derivative is considered in the sense of Caputo. Then, operational matrix of fractional inte...

متن کامل

A New Optimal Solution Concept for Fuzzy Optimal Control Problems

In this paper, we propose the new concept of optimal solution for fuzzy variational problems based on the possibility and necessity measures. Inspired by the well–known embedding theorem, we can transform the fuzzy variational problem into a bi–objective variational problem. Then the optimal solutions of fuzzy variational problem can be obtained by solving its corresponding biobjective variatio...

متن کامل

A Numerical Approach for Fractional Optimal Control Problems by Using Ritz Approximation

In this article, Ritz approximation have been employed to obtain the numerical solutions of a class of the fractional optimal control problems based on the Caputo fractional derivative. Using polynomial basis functions, we obtain a system of nonlinear algebraic equations. This nonlinear system of equation is solved and the coefficients of basis polynomial are derived. The convergence of the num...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematical Control and Related Fields

سال: 2021

ISSN: ['2156-8499', '2156-8472']

DOI: https://doi.org/10.3934/mcrf.2020033